Implementasi Algoritma FP-Growth Untuk Menentukan Pola Pembelian Konsumen Pada Data Transaksi Penjualan PT Ligno Specialty Chemicals

Riska Tajrian, Catur Eri Gunawan, Gusmelia Testiana

Sari


Business competition in Indonesia is currently getting strict, especially in the
manufacturing industry. PT ligno Specialty chemicals is a chemical industry company that
applies the B2B model in their target market. PT Ligno must maintain relationships with
customers such as fulfilling customer demand for the stock of goods to be purchased.
However, determining the amount of inventory for sales stock is not an easy thing. At PT
Ligno in determining the amount of inventory is only based on mere estimates and on the
other side there is sales transaction data that has not been optimally utilized. So that an
alternative solution in this study is to use the data mining method with the FP-Growth
algorithm to find out the association rule between goods. This study aims to determine
consumer purchase patterns based on sales transaction data for 2018-2021 and evaluate the
results of association rules using lift ratios. The results showed that the FP-Growth algorithm
can be applied to determine consumer purchasing patterns in PT Ligno's sales transactions.
There are 8 association rules that meet the minimum support of 5% and the minimum
confidence of 80%, and consumers tend to buy items FGC-C043, FGC-C029, and FGC-C042
simultaneously, and also on items FGC-C012 and FGC-C013. The rules with the highest
support, confidence, and lift ratio values are if you buy FGC-C043 items, you also buy FGCC029
and FGC-C042 items with a support value of 6.3%, confidence of 100%, and lift ratio of
14,458. The results of the evaluation of the combination of minimum support and minimum
confidence, show that there are four rules with an lift ratio of less than . So that overall, the
rules generated in the FP-Growth algorithm in addition to the four rules are valid if they are
used as a reference in determining inventory.


Teks Lengkap:

PDF

Referensi


Badan Pusat Statistik. Pertumbuhan Produksi Industri Manufaktur Triwulan IV

Copyright © The Author(s)

This work is licensed under a Creative Commons

Attribution-ShareAlike 4.0 International License

Prosiding Seminar Nasional Sains dan Teknologi Terapan, Vol. 6, 2023

[Internet]. Berita Resmi Statistik (No.14/02/Th. XXIII); 2020. Available from:

https://www.bps.go.id/pressrelease/2020/02/03/1739/pertumbuhan-produksiibs-

tahun-2019-naik-4-01-persen-dibandingkan-tahun-2018.html

Hutt MD, Speh TW. Business Marketing Management: B2B [Internet]. Tenth Edit.

South-Western Cengage Learning; 2021 [cited 2022 Oct 13]. Available from:

http://dspace.vnbrims.org:13000/jspui/bitstream/123456789/4877/1/Business

Marketing Management B2B.pdf

Erwansyah K. Implementasi Data Mining Untuk Menganalisa Hubungan Data

Penjualan Produk Bahan Kimia Terhadap Persediaan Stok Barang Menggunakan

Algoritma FP (Frequent Pattern) Growth Pada PT. Grand Multi Chemicals. J Teknol

Sist Inf dan Sist Komput TGD [Internet]. 2019 Jul 18 [cited 2022 Sep 7];2(2):30–40.

Available from: https://ojs.trigunadharma.ac.id/index.php/jsk/article/view/123

Firman CE. Penentuan Pola Yang Sering Muncul Untuk Penjualan Pupuk

Menggunakan Algoritma FP-Growth. Inform J Inform Manaj dan Komput [Internet].

Jan 10 [cited 2022 Sep 7];9(2):1–8. Available from:

http://ejournal.stmikdumai.ac.id/index.php/path/article/view/97

Dunham MH. Data Mining: Introductory and Advanced Topics. Pearson Education

India; 2006.

Sidhu S, Meena UK, Nawani A, Gupta H, Thakur N. FP Growth Algorithm

Implementation. Int J Comput Appl. 2014;93(8).

Salam A, Zeniarja J, Wicaksono W, Kharisma L. Pencarian Pola Asosiasi Untuk

Penataan Barang Dengan Menggunakan Perbandingan Algoritma Apriori Dan Fp-

Growth (Study Kasus Distro Epo Store Pemalang). Dinamik [Internet]. 2018 Jun 17

[cited 2022 Sep 8];23(2):57–65. Available from:

https://www.unisbank.ac.id/ojs/index.php/fti1/article/view/7178

Anggrawan A, Mayadi M, Satria C. Menentukan Akurasi Tata Letak Barang dengan

Menggunakan Algoritma Apriori dan Algoritma FP-Growth. MATRIK J Manajemen,

Tek Inform dan Rekayasa Komput [Internet]. 2021 Nov 26;21(1):125–38. Available

from:

https://journal.universitasbumigora.ac.id/index.php/matrik/article/view/1260

Nelisa, Halim SHA. Identifikasi Pola Penjualan Kategori Barang dalam Menjaga

Stabilitas Stok Barang Menggunakan Algoritma Fp-Growth. J Inform Ekon Bisnis

[Internet]. 2021 Dec 30 [cited 2022 Sep 8];3(4):155–60. Available from:

https://infeb.org/index.php/infeb/article/view/94

Kadafi M. Penerapan Algoritma FP-Growth Untuk Menemukan Pola Peminjaman

Buku Perpustakaan UIN Raden Fatah Palembang. MATICS J Ilmu Komput dan

Teknol Inf (Journal Comput Sci Inf Technol [Internet]. 2018 Mar 22 [cited 2022 Sep

;10(2):52–8. Available from: http://ejournal.uinmalang.

ac.id/index.php/saintek/article/view/5628

Mahendra KA, Khusnuliawati H, Charolina A. Penerapan Data Mining Pada

Peminjaman Buku di Perpustakaan Universitas Sahid Surakarta Menggunakan

Algoritma FP-Growth. Universitas Sahid Surakarta; 2018.

Han J, Pei J, Tong H. Data Mining: Concepts And Techniques. Morgan kaufmann;

Takdirillah R. Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap

Data Transaksi Sebagai Pendukung Informasi Strategi Penjualan. Edumatic J

Pendidik Inform. 2020;4(1):37–46.

Siyoto S, Sodik MA. Dasar Metodologi Penelitian. Literasi Media Publishing; 2015.

Arikunto S. Prosedur Penelitian Suatu Pendekatan Praktik. Jakarta : Rineka Cipta;

Shafique U, Qaiser H. A Comparative Study of Data Mining Process Models (KDD,

CRISP-DM and SEMMA). Int J Innov Sci Res [Internet]. 2014 Nov 20 [cited 2023 Mar

;12(1):217–22. Available from: http://www.ijisr.issr395

Copyright © The Author(s)

This work is licensed under a Creative Commons

Attribution-ShareAlike 4.0 International License

Prosiding Seminar Nasional Sains dan Teknologi Terapan, Vol. 6, 2023

journals.org/abstract.php?article=IJISR-14-281-04

Putri NC. Implementasi Algoritma FP-Growth Untuk Mencari Aturan Asosiasi dan

Menentukan Stok Barang Pada Toko Rotte Bakery [Internet]. 2021. Available from:

http://repository.uin-suska.ac.id/53563/

Hikmawati E, Maulidevi NU, Surendro K. Minimum threshold determination

method based on dataset characteristics in association rule mining. J Big Data

[Internet]. 2021 Dec 1 [cited 2022 Dec 14];8(1):1–17. Available from:

https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00538-

Zaida M. Penerapan Metode Frequent Pattern-Growth (FP-Growth) Untuk Mencari

Pola Penggunaan Internet Pada Anak Sekolah Dasar Terhadap Pekerjaan Orang Tua

[Internet]. Universitas Islam Negeri Sultan Syarif Kasim Riau; 2017. Available from:

http://repository.uin-suska.ac.id/18113/


Refbacks

  • Saat ini tidak ada refbacks.


P-ISSN (cetak): 2654-4032
E-ISSN (online): 2964-6820

Kantor Redaksi:
Fakultas Sains dan Teknologi
Universitas Islam Negeri Raden Fatah Palembang
email: semnassaintek_uin@radenfatah.ac.id
 

Creative Commons License
Karya ini disebarluaskan di bawah lisensi Creative Commons Attribution-ShareAlike 4.0 International License.